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approach
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Abstract. The idea of this paper is to prove two general theorems
using q-series and deduce some partial theta identities and false theta
identities. Some of the identities of Ramanujan come as special cases.

1. Introduction

Andrews and Warnaar in [1] used Bailey transform to prove some iden-
tities found on page 13 of Ramanujan’s Lost Notebook [2] and some more
identities. On an empirical exploration of these identities, Andrews and
Warnaar using MACSYMA got the identity

∞∑
n=0

(−zq; q2)n(−z−1q; q2)n
(−q; q)2n+1

qn =
∞∑
n=0

1− z2n+1

1− z
z−nqn(n+1)

=
∞∑
n=0

1 + z + z2 + ...+ z2n

zn
qn(n+1).

They proved this theorem using Bailey transform. They put the query:
“Where does it fit in the classical theory of q-series”? This paper is an
answer to this query. It is to be seen that Theorems 1 and 7 of [1] rely on
Symmetric Bilateral Bailey Transform [1, Lemma 2.1, p. 175]

∞∑
n=−∞

αnγn =

∞∑
n=0

βnδn,
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and my (3.1) of [4] can also be deduced from the above transform by a
suitable choice of αn, βn and γn. This implies that (3.1) of [4] is in fact a
precursor of some of the results of [1].

The aim in writing this paper is to give a simple proof of this theorem
using q-series, and deduce some partial theta identities, false theta identities
and identities of Ramanujan.

2. The q-notations and Jacobi theta functions

Throughout the paper we shall be employing the standard q-hypergeometric
notation. For |q| < 1,

(a; qk)n =
n∏

r=1

(1− aqk(r−1)), n ≥ 1,

(a; qk)0 = 1,

(a; qk)∞ =

∞∏
r=0

(1− aqkr).

The partial products for the four classical Jacobi’s theta functions are

θ1;N (z, q) = 2q
1
4 sin z

∞∏
n=1

(1− q2n)

N∏
m=1

(1− 2q2m cos 2z + q4m),

θ2;N (z, q) = 2q
1
4 cos z

∞∏
n=1

(1− q2n)

N∏
m=1

(1 + 2q2m cos 2z + q4m),

θ3;N (z, q) =

∞∏
n=1

(1− q2n)

N∏
m=1

(1 + 2q2m−1 cos 2z + q4m−2),

θ4;N (z, q) =
∞∏
n=1

(1− q2n)
N∏

m=1

(1− 2q2m−1 cos 2z + q4m−2).

We suppose throughout that q = exp(2πιτ) , Im(τ) > 0. Rogers–Fine
identity [3, p. 334] is

∞∑
n=0

(α)nτ
n

(β)n
=

∞∑
n=0

(α)n(ατq/β)nβ
nτnqn

2−n(1− ατq2n)

(β)n(τ)n+1
.

We shall be using the transformation of Andrews and Warnaar [1]

3ϕ2

[
a,−a, aq
a2,−aq2

; q2; q

]
=

(−q; q)∞
(−aq; q)∞

∞∑
r=0

arqr
2
. (1)
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3. Main theorems

We prove two theorems.

Theorem 1. One has
∞∑
n=0

(−zq; q2)n(−z−1q; q2)n
(−q; q)2n+1

qn =
∞∑
n=0

1− z2n+1

1− z
z−nqn(n+1)

=

∞∑
n=0

1 + z + z2 + ...+ z2n

zn
qn(n+1). (2)

Proof. This theorem was proved in [1] by Andrews and Warnaar using
Bailey transform. We give a simpler proof using q-series. In fact this theorem
is a special case of our general theorem [4, Theorem 1, p. 120]. Taking
α1 = q, α2 = q2, α3 = −q, β1 = −q3, t = 1 and λ = 1 in this theorem, we get

∞∑
n=0

(−aq; q2)n(−a−1q; q2)n(q; q
2)n(q

2; q2)n(−q; q2)n
(q2; q2)2n(−q3; q2)n

qn

=
∞∑

N=−∞
aNqN

2
∞∑
n=0

(q; q2)n(q
2; q2)n(−q; q2)n

(q2; q2)n+N (q2; q2)n−N (−q3; q2)n
qn. (3)

The left side of (3) is

∞∑
n=0

(−aq; q2)n(−a−1q; q2)n(q; q
2)n(q

2; q2)n(−q; q2)n
(q; q)2n(−q; q)2n(−q3; q2)n

qn

= (1 + q)

∞∑
n=0

(−aq; q2)n(−a−1q; q2)n
(−q; q)2n+1

qn. (4)

Using (1), the right side of (3) may be calculated as follows:

(1 + q)

∞∑
r=0

qr
2+r +

∞∑
N=1

(aN + a−N )qN
2

×
∞∑
n=0

(q; q2)n+N (q2; q2)n+N (−q; q2)n+N

(q2; q2)n(q2; q2)n+2N (−q3; q2)n+N
qn+N

= (1 + q)
∞∑
r=0

qr
2+r + (1 + q)

∞∑
N=1

(aN + a−N )qN
2+N

(−q; q)2N+1

×
∞∑
n=0

(q2N+1; q2)n(q
2N+2; q2)n(−q2N+1; q2)n

(q2; q2)n(q4N+2; q2)n(−q2N+3; q2)n
qn

= (1 + q)

[ ∞∑
r=0

qr
2+r+

∞∑
N=1

(aN+a−N )qN
2+N

(−q; q)2N+1

(−q; q)∞
(−q2N+2; q)∞

∞∑
r=0

q(2N+1)rqr
2

]
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= (1 + q)
∞∑
r=0

qr
2+r + (1 + q)

∞∑
N=1

(aN + a−N )qN
2+N

∞∑
r=0

q(2N+1)rqr
2

= (1 + q)

∞∑
r=0

qr
2+r + (1 + q)

∞∑
N=1

(aN + a−N )

∞∑
r=N

qr
2+r

= (1 + q)
∞∑
r=0

qr
2+r

r∑
N=−r

aN

= (1 + q)

∞∑
r=0

1− a2r+1

1− a
a−rqr

2+r. (5)

By (4) and (5) we have (2). □

Theorem 2. We have the identity

∞∑
n=0

(−zq2; q2)n(−z−1q2; q2)n
(−q; q)2n+2

qn =

∞∑
n=0

1− z2n+2

1− z2
z−nqn(n+2)

=

∞∑
n=0

1 + z2 + z4 + ...+ z2n

zn
qn(n+2). (6)

Proof. In [4, p. 123] we have proved the general equality

∞∑
n=0

(−α)n+1(−q/α)n((αr))n
(q)2n+1((βs))n

(tqλ)
n
=

1 + α

1− q
rϕs+1

[
(αr);
(βs), q

2; tq
λ

]

+
∞∑

N=0

(α1+N + α−N )q(N
2+N)/2((αr))N

(q)2N+1((βs))N
(tqλ)

N

×
∞∑
n=0

((αr)q
N )n

(q)n(q2N+2)n((βs)qN )n
(tqλ)

n
,

where (αr) denotes the sequence α1, α2, ..., αr and λ is a suitable constant.
Setting here q → q2, α = z−1, α1 = q2, α2 = q3, α3 = −q2, β1 = −q4, t = 1,
and λ = 1/2, we get

(1 + z−1)
∞∑
n=0

(−z−1q2; q2)n(−zq2; q2)n(q
2; q2)n(q

3; q2)n(−q2; q2)n
(q2; q2)2n+1(−q4; q2)n

qn

=
∞∑

N=0

(z−N−1 + zN )qN
2+N (q2; q2)N (q3; q2)N (−q2; q2)N

(q2; q2)2N+1(−q4; q2)N
qN

×
∞∑
n=0

(q2N+2; q2)n(q
2N+3; q2)n(−q2N+2; q2)n

(q2; q2)n(q4N+4; q2)n(−q2N+4; q2)n
qn. (7)
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The left side of (7) is equal to

(1 + q2)(1 + z−1)

1− q

∞∑
n=0

(−z−1q2; q2)n(−zq2; q2)n
(−q; q)2n+2

qn. (8)

In view of (1), the right side of (7) becomes

(1 + q2)

1− q

∞∑
N=0

(z−N−1 + zN )qN
2+2N

(−q; q)2N+2

×
∞∑
n=0

(q2N+2; q2)n(q
2N+3; q2)n(−q2N+2; q2)n

(q2; q2)n(q4N+4; q2)n(−q2N+4; q2)n
qn

=
(1 + q2)

1− q

∞∑
N=0

(z−N−1 + zN )qN
2+2N (−q; q)∞

(−q; q)2N+2(−q2N+3; q)∞

∞∑
r=0

q(2N+2)rqr
2

=
(1 + q2)

1− q

∞∑
N=0

(z−N−1 + zN )qN
2+2N

∞∑
r=0

q(2N+2)rqr
2

=
(1 + q2)

1− q

∞∑
r=0

qr
2+2r

r∑
N=0

(z−N−1 + zN )

=
(1 + q2)

1− q

∞∑
r=0

qr
2+2r

[
(z−1 + z−2 + ...+ z−r−1) + (1 + z + ...+ zr)

]
=

(1 + q2)

1− q

∞∑
r=0

qr
2+2r

[
(1 + z + ...+ zr)

(
1 +

1

zr+1

)]

=
(1 + q2)

1− q

∞∑
r=0

qr
2+2r

[(
1− zr+1

1− z

)
(1 + zr+1)

zr+1

]

=
(1 + q2)

1− q

∞∑
r=0

qr
2+2r (1− z2r+2)

1− z
z−r−1. (9)

Hence by (8) and (9), after dividing by (1 + z−1), we have (6). □

4. Two identities of Ramanujan

We give simple proofs of two identities of Ramanujan found in the “Lost”
Notebook [2]. The first identity of Ramanujan is

∞∑
n=0

(q; q2)2n
(−q; q)2n+1

qn =

∞∑
n=0

(−1)nqn(n+1).

We give two proofs which are simple deductions of Theorem 1. The first is
simply put z = −1 in Theorem 1. The second is taking z = −e2ιz and then
z = π in Theorem 1.
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The second identity of Ramanujan is
∞∑
n=0

(q;−q)n
(−q; q)2n+1

qn =
∞∑
n=0

(−1)nq2n(n+1). (10)

Simple calculation shows that the left side of (10) is

∞∑
n=0

(q; q2)n(−q2; q2)n
(−q; q)n+1(−q2; q2)n

qn =

∞∑
n=0

(q; q2)n
(−q; q)n+1

qn.

Applying Rogers–Fine identity [3] in the above, we have the right side of
(10).

5. Some more identities

The following identities come as special cases of the above two theorems.
We have the identities

∞∑
n=0

(−q; q2)n
(−q2; q2)n(1 + q2n+1)

qn =
∞∑
n=0

(2n+ 1)qn(n+1)

( z = 1 in Theorem 1),

∞∑
n=1

(−q2; q2)n−1

(−q; q2)n(1 + q2n)
qn−1 =

∞∑
n=1

nqn
2−1

( z = 1 in Theorem 2),

∞∑
n=1

(q2; q2)2n−1

(−q; q)2n
qn−1 =

∞∑
n=1

(−1)n−1nqn
2−1

( z = −1 in Theorem 2).

6. False and partial theta function identities

By specializing z, we get the following identities for false and partial theta
functions:

1

(q2; q2)∞

∞∑
n=0

qn

(−q; q)2n+1
θ3;n(z, q) =

∞∑
n=0

sin(2n+ 1)z

sin z
qn(n+1) (11)

(e2ιz for z in Theorem 1),

1

(q2; q2)∞

∞∑
n=0

qn

(−q; q)2n+1
θ3;n(π/2, q) =

∞∑
n=0

(−1)nqn(n+1)

( z = π/2 in (11)),
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1

(q2; q2)∞

∞∑
n=0

qn

(−q; q)2n+1
θ4;n(z, q) =

∞∑
n=0

(−1)n cos(2n+ 1)z

cos z
qn(n+1) (12)

(−e2ιz for z in Theorem 1),

1

(q2; q2)∞

∞∑
n=0

qn

(−q; q)2n+1
θ4;n(π, q) =

∞∑
n=0

(−1)nqn(n+1)

( z = π in (12)),

q−
1
4

(q2; q2)∞

∞∑
n=0

qn

(−q; q)2n+2
θ2;n(z, q) =

∞∑
r=0

sin(2r + 2)z

sin z
qr(r+2) (13)

(e2ιz for z in Theorem 2),

q−
1
4

(q2; q2)∞

∞∑
n=0

qn

(−q; q)2n+2
θ2;n(π, q) = −

∞∑
r=0

(2r + 2)qr(r+2)

( z = π in (13)),

q−
1
4

(q2; q2)∞ sin z

∞∑
n=0

qn

(−q; q)2n+2
θ1;n(z, q) = 2

∞∑
r=0

(−1)r sin(2r + 2)z

sin 2z
qr(r+2)

(14)

(−e2ιz for z in Theorem 2),

q−
1
4

(q2; q2)∞

∞∑
n=0

qn

(−q; q)2n+2
θ1;n(π/2, q) = 2

∞∑
r=0

(r + 1)qr(r+2)

( z = π/2 in (14)).

References

[1] G. E. Andrews and S. O. Warnaar, The Bailey transform and false theta functions,
Ramanujan J. 14 (2007), 173–188.

[2] S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa, New Delhi,
1988.

[3] L. J. Rogers, On two theorems of combinatory analysis and some allied identities, Proc.
London Math. Soc. (2) 16 (1917), 315–336.

[4] B. Srivastava, Partial theta function expansions, Tohoku Math. J. 42 (1990), 119–125.

Department of Mathematics and Astronomy, University of Lucknow,
Lucknow, india.

E-mail address: bhaskarsrivastav61@gmail.com


