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ABSTRACT. The idea of this paper is to prove two general theorems
using g-series and deduce some partial theta identities and false theta
identities. Some of the identities of Ramanujan come as special cases.

1. Introduction

Andrews and Warnaar in [1] used Bailey transform to prove some iden-
tities found on page 13 of Ramanujan’s Lost Notebook [2] and some more
identities. On an empirical exploration of these identities, Andrews and
Warnaar using MACSYMA got the identity
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They proved this theorem using Bailey transform. They put the query:
“Where does it fit in the classical theory of g-series”? This paper is an
answer to this query. It is to be seen that Theorems 1 and 7 of [1] rely on
Symmetric Bilateral Bailey Transform [1, Lemma 2.1, p. 175]
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and my (3.1) of [4] can also be deduced from the above transform by a
suitable choice of a,, 3, and 7,. This implies that (3.1) of [4] is in fact a
precursor of some of the results of [1].

The aim in writing this paper is to give a simple proof of this theorem
using g¢-series, and deduce some partial theta identities, false theta identities
and identities of Ramanujan.

2. The g-notations and Jacobi theta functions

Throughout the paper we shall be employing the standard ¢g-hypergeometric
notation. For |¢| < 1,
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The partial products for the four classical Jacobi’s theta functions are
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We suppose throughout that ¢ = exp(2mer) , Im(7) > 0. Rogers—Fine
identity [3, p. 334] is
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We shall be using the transformation of Andrews and Warnaar [1]
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3. Main theorems
We prove two theorems.

Theorem 1. One has

1— Z2n+1

oo o
(=24 (=270 —nn(n+1)
> : "= "

n—0 (7Q7 Q)2n+1 n—=0

= 1+z+22+..+22 o
z
n=0
Proof. This theorem was proved in [1] by Andrews and Warnaar using
Bailey transform. We give a simpler proof using g-series. In fact this theorem
is a special case of our general theorem [4, Theorem 1, p. 120]. Taking
a1 =q, 00 =¢*,a3 = —q,01 = —¢>,t =1 and A = 1 in this theorem, we get
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The left side of (3) is
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Using (1), the right side of (3) may be calculated as follows:
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By (4) and (5) we have (2).
Theorem 2. We have the identity
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Proof. In [4, p. 123] we have proved the general equality
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where (o) denotes the sequence ai,ao, ..., and A is a suitable constant.

Setting here ¢ = ¢*>,a = 27 a1 = ¢®, o0 = ¢ a3 = —¢%, 61 = ¢t =1,
and A\ = 1/2, we get
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The left side of (7) is equal to
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Hence by (8) and (9), after dividing by (1 4+ z~!), we have (6). O

4. Two identities of Ramanujan

We give simple proofs of two identities of Ramanujan found in the “Lost”
Notebook [2]. The first identity of Ramanujan is
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We give two proofs which are simple deductions of Theorem 1. The first is
simply put z = —1 in Theorem 1. The second is taking z = —e?** and then
z = in Theorem 1.
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The second identity of Ramanujan is
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Simple calculation shows that the left side of (10) is

oo

.42 2.2 0 c 2
3 (45 4*)n( T )2n r=3 (69 o

= 6D (=% )n = (G Dnn

Applying Rogers—Fine identity [3] in the above, we have the right side of
(10).
5. Some more identities

The following identities come as special cases of the above two theorems.
We have the identities
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6. False and partial theta function identities

By specializing z, we get the following identities for false and partial theta

functions:
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