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Two types of logical consequence are compared: one, with respect to matrix and
designated elements and the other with respect to ordering in a suitable algebraic
structure. Particular emphasis is laid on algebraic structures in which there is no
top-element relative to the ordering. �e signi�cance of this special condition is
discussed. Sequent calculi for a number of such structures are developed. As a
consequence it is re-established that the notion of truth as such, not to speak of
tautologies, is inessential in order to de�ne validity of an argument.
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1. Introduction: Logical consequences vis a vis truth
�e notion of truth serves various explanatory purposes. One of these is
found in the attempted explanations of validity of deductive arguments. An
argument is valid if and only if the conclusion of an argument is true when-
ever all the premises of the argument are also true. �e context, here, is taken
as classical and two-valued. When consequence is understood as a relation
preserving truth, the notion of truth is taken to be that which relates seman-
tics to states of a�airs. Set theoretic models of well-formed formulae of 1st
order languages are the formal representation of states of a�airs. Sometimes
formulae (propositions) are modeled as sets of possible worlds, logical con-
nectives by set theoretic operations and logical consequence by set theoretic
relation. �ough apparently there is no mention of ‘truth’ in this approach,
the underlying intention is that a formula be associated with the set of those
worlds (states of a�airs)where the formula is true. Long back in 1920’smany-
valuedness (i.e., allowing sentences to have values other than true and false)
was introduced and gradually accepted within the discourse of logic and
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philosophy. In many-valued context the notion of consequence has been
de�ned in terms of some designated values equivalent in some sense to the
value ‘true’ of two-valued contexts. In most of the signi�cant many-valued
logics, however, the designated set is taken to be a singleton set, i.e., simply
the value ‘true’ is designated as before. If the notion of truth is to be of any use
for explanation of the notion of validity of arguments, it has to be conceived
in away that accommodates behavior of truthwith respect to the identi�able
logical operations like conjunction, disjunction, negation, particularization,
generalization etc. �ese kinds of behavior of truth get re�ected when truth
is studied in an algebraic setting on sets of so-called “truth values”. �ese get
re�ected well when properties of truth relevant to logic are characterized
mathematically. �at these mathematically identi�able properties of truth
are not out of tune with most other functions that this notion performs can
be seen in the analysis of the notion of truth proposed by Tarski (although in
the context of two-valuedness and of formalized languages only). It should
also be noted that the notion of logical truth or tautologihood plays a fun-
damental role in logic-systems that depend upon truth-semantics, in partic-
ular, in framing axiomatic theories. Up to a point of time in history, logic
was engaged in studies of tautologies or universally valid sentences, giving
rise to criticisms of spending energy in dealing with “contentless” assertions.
Subsequently, in axiomatic theories, usually two kinds of axioms are consid-
ered, logical and proper—the �rst kind being sentences that are true always,
in all situations and the second kind being sentences that are true in speci�c
situations or models. It is only recent in the long history of logic that logical
consequence rather than logical truth, has taken the centre-stage. Logical
consequence is usually de�ned in two di�erent ways. A well-formed for-
mula (w�) A is a logical consequence of a set of w�s Γ (written as Γ ⊧1 A
in this paper) if and only if in any situation (represented by a valuation) if
every member of Γ receive values in the set D of designated elements in a
suitable matrix, A also receives a value in D. Another way of de�ning the
consequence is that for every valuation v in any algebra of an appropriate
class, v(Γ) is less or equal to v(A), where v(Γ) means some kind of com-
position of the values under v of each component of Γ. �e second kind
of consequence shall be denoted by Γ ⊧2 A in the sequel. �ese two ap-
proaches are not equivalent. When the two relations coincide, it becomes
necessary that there shall be only one designated element in the value-set
and it shall be the topmost element of the set relative to the ordering. �is
point will be further clari�ed in the following section. But there are various
systems with more than one designated values. Even if we consider only one
designated value, it is not guaranteed that the system contains tautologies
or theorems. In fact, Leo Simons (1974, 1978) proposed a system C which is

©�e Authors
Studia Philosophica Estonica (2008) 1.1, 104–117 Published online: August 2008

Online ISSN: 1736–5899
www.spe.ut.ee

www.spe.ut.ee


106 Logic and truth

equivalent to Copi’s system (Copi 1998). SystemC is peculiar in that in it for-
mulae which are by classical characterizations tautologies or theorems may
not be a C-theorem. In this sense, the system C contains no tautologies. �e
logic-system B developed by Belnap and Font (Belnap 1977, Font 1997) with
semantics given in the 4-valued Belnap lattice and Kleene 3-valued logic K
with strong negation do not have theorems at all. So, instead of beginning
with a notion of truth one can try to understand validity by focusing only
upon the mathematically characterizable properties of the values assignable
to the conclusion in relation to those assignable to the premises. �e usual
algebraic structures in which semantics of various logic-systems are de�ned
admit of bounds viz., the top and the least elements and there are already ex-
isting logical systems with semantic consequence relations de�ned in terms
of ordering in such structures. On the other hand, it is quite possible and
natural also, to think of algebraic structures that do not essentially require a
top element for their basic de�ning properties. So a natural query is: what
changes in the logic systems have to be made in order to have their seman-
tics, i.e., consequence relation fully determined by these structures without
top elements or making any reference to the top element even though it ex-
ists. Such logics obviously do not have tautologies and as completeness can
be proved, they do not have any theorems either.
One might argue that in the use of order relations of an algebraic struc-

ture in the semantics, the role of truth is not abandoned but merely shi�ed
to a comparative notion viz., ‘more true than’. And indeed, it is de�nitely so
if ‘degree of truth’ is accepted and even non-comparability of truth-degrees
is also admitted. Moreover when the highest and lowest elements of the
algebra are absent, one should be ready to give up the notions of absolute
or full true and absolute or full false altogether. Neither of the above two
ideas are readily acceptable by the classicists. Yet, more importantly, an at-
tempt to give semantics to logical consequence by ordering relation opens
up other possibilities too. Something (other than truth) is being preserved
by the consequence—that may be meaning, information or acceptability or
something else.
In this paper we shall give further instances of logics in which one talks

of validity of an argument (or soundness of the consequence relation) with-
out any reference to the set of designated elements or ‘truth’. However, the
purpose of this paper is not limited to that only but to emphasize upon the
fact that a valid consequence may completely ignore the notion of truth, be
it absolute or comparative. �e work points at the existence of a property
of sentences di�erent from truth which facilitates consequence, a property
which need not have an extreme value or bounds but has to be only alge-
braically characterizable.
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2. Consequence relation without truth
Formally, an argument is de�ned as a logical consequence or semantic con-
sequence relation denoted by ⊧. Let Γ = {A1,A2, . . . ,An} be a set of w�s, A
a single w� and v a valuation function from the set of w�s to a suitable al-
gebraic structure. We shall de�ne ⊧ in two ways and for clarity shall denote
them by ⊧1 and ⊧2. Γ ⊧1 A if and only if for all v, v(Ai) ∈ D for all Ai ∈ Γ
implies v(A) ∈ D, where D is a set of designated elements of the algebra.
Alternatively, let v(Γ) denote some kind of composition of the values of

v(A1), v(A2), . . . , v(An), the composition being available in the algebraic
structure usually the composition for computing the conjunction. Another
way of de�ning the consequence relation is: Γ ⊧2 A if and only if for all v,
v(Γ) ≤ v(A), where ≤ is a suitable ordering in the structure.
In the standard 2-valued (values being 0 and 1, say) classical logic with

D = {1} and natural ordering ≤, the two notions are equivalent. Here v(Γ)
is taken as v(A1)∧v(A2)∧⋅ ⋅ ⋅∧v(An), ∧ being the composition for classical
conjunction. Let Γ ⊧1 A. Now, v(Γ) is either 0 or 1. If v(Γ) is 0, then
v(Γ) ≤ v(B) always. If v(Γ) is 1, then v(Ai) = 1 for all Ai ∈ Γ. So, by the
de�nition of ⊧1, v(B) = 1. �en v(Γ) ≤ v(B). �us Γ ⊧2 A. Conversely, let
Γ ⊧2 A and let v(Ai) = 1 for all Ai ∈ Γ. �en v(Γ) = 1. So, by the de�nition
of ⊧2, v(B) = 1. �at is Γ ⊧1 A.

�e above equivalence depends on the fact that

1. v(Γ) = 1 if and only if v(Ai) = 1 for all Ai ∈ Γ, i.e., the composition
operator ∧ is such that x ∧ y = 1 if and only if x = 1 and y = 1.

2. 1 is the greatest element relative to the ordering.

3. 1 is the designated and the only designated element.

It is to be noted that 1, 2 and 3 are crucial for establishing the above equiva-
lence.
Let us ignore the ordering and consider the algebraic structure only with

any subset D as designated and de�ne ⊧1. It should be noted that the set D
needs to be endowedwith certain restrictions depending upon the particular
logic-system. However, the following properties of ⊧1 are derivable for any
subset D. �e relation satis�es the conditions, the basic requirement of a
logical consequence relation due to Gentzen (1969).

(i) A ∈ Γ implies Γ ⊧1 A (overlap)

(ii) Γ ⊆ ∆, Γ ⊧1 A implies ∆ ⊧1 A (weakening or monotonicity)

(iii) If for all B ∈ ∆, Γ ⊧1 B and ∆ ⊧1 A then Γ ⊧1 A (cut)
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So, weakening comes automatically if the logic is de�ned by designated set.
Let v(B) = 1 for all B ∈ ∆. �en v(B) = 1 for all B ∈ Γ. So, v(A) = 1.
Hence, if a logic intends to avoid weakening (e.g., non-monotonic logic),
it can not be de�ned in terms of a designated element. From the angle of
sequent calculus, the condition (ii) is le� weakening. It may be mentioned
that if logic is de�ned in terms of a designated set, then the right weakening
also holds.
Even in this approach, there may be a logic without there being tau-

tologies, although elements of the designated set may be considered as the
counterpart of ‘True’ of 2-valued standard semantics.
Let us consider the following truth tables of Kleene’s system.

A ∼A
1 0
1/2 1/2
0 1

→ 1 1/2 0
1 1 1/2 0
1/2 1 1/2 1/2
0 1 1 1

∧ 1 1/2 0
1 1 1/2 0
1/2 1/2 1/2 0
0 0 0 0

∨ 1 1/2 0
1 1 1 1
1/2 1 1/2 1/2
0 1 1/2 0

So the matrix is ⟨{1, 1/2, 0}, ∼,→,∧,∨, {1}⟩. Here if any valuation assigns
a value 1/2 to every propositional variable present in a w�, the valuation
assigns 1/2 to that w� as a whole. So, there are no tautologies although one
may de�ne the logical consequence⊧1 relative to thismatrix. It may bemen-
tioned here that Leo Simons also considered the same matrix in the discus-
sion of his system C (Simons 1974, 1978). �us the standard matrix method
for de�ning consequence ⊧1 may not �nd a formula A in some logic-system
so that ⊧1 A holds, or in other words, A is a tautology. Some comparisons
between the two consequences are shown below.
Let ⊧1 be de�ned in terms of designated value set D. For any two for-

mulae A and B, we de�ne A ≤ B if and only if for all v , v(A) ∈ D implies
v(B) ∈ D. �is relation is re�exive and transitive. We now de�ne A ≡ B if
and only if A ≤ B and B ≤ A. �is is an equivalence relation. Hence the set
of w� are clustered in classes of mutually equivalent elements. Now, we li�
the order relation ≤ among equivalence classes by [A] ≤ [B] if and only if
A ≤ B. �is de�nition is unambiguous. �e operations of the language are
usually li�ed too as follows: ∼[A] ∶= [∼A], [A] ∧ [B] ∶= [A∧ B], [A] ∨ [B] ∶=
[A∨B], [A] → [B] ∶= [A→ B]. Because of the standard conditions imposed



Jayanta Sen and Mihir Kumar Chakraborty 109

on the use of connectives the operation ≡ turns out to be a congruence and
hence there occurs no ambiguity in the de�nition.
Let A be called a tautology if and only if v(A) ∈ D for all valuations v

in the original matrix relative to which ⊧1 is de�ned. It is easy to check that
tautologies form an equivalence class. If this class is non-empty, then it has
to be the greatest element among the clusters. However, this class may be
empty, i.e., there may be no tautologies of the logic although there is the
notion of logical consequence in it. Hence the clusters of w�s are partially
ordered with a topmost cluster (if there is any tautology at all) which is the
cluster of tautologieswith respect to the designated set. We can think of there
being the ordering without there being tautologies. An algebraic structure is
thus formed of the equivalence class (the quotient algebra) with or without
a topmost element.
We now make the following comparison between the two logical con-

sequence ⊧1 de�ned above and ⊧2 to be de�ned below. Let A ⊧2 B hold
if and only if for all valuations V in the quotient algebra formed above,
V(A) ≤ V(B). Since canonical mapping viz., A → [A] turns out to be a
valuation, we have that [A] ≤ [B] when A⊧2 B holds. Hence, according to
construction, A⊧1B holds. So, ⊧2 de�ned in this way ismore restrictive than
⊧1. On the other hand, in general consequence of the second type ⊧2 may
include both monotonic and non-monotonic consequences.
However, we concentrate on ⊧2. In the next section, we discuss logics

for which bounds, or more speci�cally, a topmost element in the value set is
not a necessity, but yet an inferencemachinerymay bemeaningfully de�ned
relative to an ordering in it. �e general framework of sequent calculus shall
be adopted in the following section with the usual syntax-semantic divide
where the semantics is a generalization of ⊧2.

3. Logic for algebras not necessarily bounded
�e following diagram shows a hierarchy of algebraic systems starting with
the simplest one and branching into two directions. In one direction, a
∼-operator is taken and gradually further axioms are added. In the other
direction, a binary operation (∗) is added and other systems with further
axioms are generated. �e meeting point of the two branches is shown. It
should be noted that quite a few of these algebras with essentially top and
least elements are models of some signi�cant logic-systems such as mul-
tiplicative additive linear logic (UCL-algebra), topological quasi-Boolean
logic (tqBa5−b), a close associate of pre-rough logic etc. (Sen and Chak-
raborty 2002, Girard 1987, Troelstra 1992). While there are theorems in the
existing logics because of the existence of topmost elements in the algebraic
structures in the systems presented here there shall be none. �at means the
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following logical systems possess valid consequence relations without any
essential reference to tautologihood or even a comparative notion of truth.
In the diagram, X Ð→ Y means X with some additional algebraic ax-

iom(s) gives Y and X Ô⇒ Y means X with some additional structure(s)
gives Y and rules of the logic corresponding to the algebra Y need to be
changed.

Lattice

L∼ LS

��
���

����

��
���

�����

HH
HHH

HHHj

HH
HHH

HHHj
∼ ∗

qBa−{d ,b} UILA

qBa−b

?

?

??
∼∼ a = a

distributivity

⊸

tqBa−b

tqBa5−b

UCL-algebra

UILAN

??

?

??

�
�

�
�	

J
J
J
J
J
J
J
J
Ĵ

J
J
J
J
J
J
J
J
Ĵ

∗ ∼∼ a = atopology

MLa = La

∼

Let us begin with the least structure on the value set as a lattice (in gen-
eral, without bounds). �e premise set Γ is taken to be �nite. In fact, we take
multisets to allow repeated occurrence of an element such as {A1,A1,A2, . . . ,
An}.

De�nition 3.1 A lattice ⟨X ,∧,∨⟩ is a structure where X is a non-empty set
and ∧,∨ are two binary operations on X satisfying for all a, b, c ∈ X, the
conditions
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(i) a ∧ b = b ∧ a, a ∨ b = b ∨ a (commutative property)

(ii) a ∧ (b ∧ c) = (a ∧ b) ∧ c,
a ∨ (b ∨ c) = (a ∨ b) ∨ c (associative property)

(iii) a ∨ (a ∧ b) = a = a ∧ (a ∨ b) (absorption property)

�e relation ≤, de�ned by a ≤ b if and only if a ∧ b = a or equivalently
a ∨ b = b is a partial order relation, a ∧ b and a ∨ b being the greatest lower
bound and the least upper bound of a, b respectively. Now, we introduce
a sequent calculus Lattice Logic (LL) for lattice. Language of the logic of
lattices, consists of pi ’s, the propositional variables (atomic sentences) and
∧,∨ the binary logical connectives conjunction and disjunction (following
usual abuse of notations). Formulae are formed as usual and they are de-
noted by A, B etc. A sequent is of the form Γ ⇒∆, where Γ and ∆ are �nite
multisets of formulae. A sequent may be treated as a generalization of the
notion of logical consequence since on the right hand side now there is a
�nite multiset instead of a single formula. �e symbol⇒ is used to indicate
the distinction.
Now, we shall state the axiom and rules of the logic.

A⇒ A Ax
Γ⇒ A Γ′,A⇒ ∆

Cut
Γ, Γ′ ⇒ ∆

Γ⇒ ∆
LW

Γ,A⇒ ∆

Γ⇒ ∆
RW

Γ⇒ A, ∆

Γ′,A,A⇒ ∆
LC

Γ′,A⇒ ∆

Γ⇒ A,A, ∆′
RC

Γ⇒ A, ∆′

A⇒ ∆ B⇒ ∆′′
L∨

A∨ B⇒ ∆, ∆′′
Γ⇒ A, B, ∆′

R∨
Γ,⇒ A∨ B, ∆′

Γ′,A, B⇒ ∆
L∧

Γ′,A∧ B⇒ ∆

Γ⇒ A Γ′′ ⇒ B
R∧

Γ, Γ′′ ⇒ A∧ B
where Γ, Γ′′, ∆, ∆′′ ≠ ∅.

�e deviations from the standard L∨ and R∧ rules of classical proposi-
tional logic may be noted. By convention, to denote the multisets we use Γ’s
as the le� hand side and ∆’s as the right of the⇒ in a sequent.

De�nition 3.2 A lattice-model is a lattice ⟨X ,∧,∨⟩ with a valuation ∥ ∥

assigning a value ∥p∥ ∈ X to each atomic sentence p in the language.
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∥ ∥ is extended to arbitrary formulae by ∥A ∧ B∥ = ∥A∥ ∧ ∥B∥ and
∥A∨ B∥ = ∥A∥ ∨ ∥B∥. A sequent Γ⇒ ∆ is said to be valid in a lattice-model
(⟨X ,∧,∨⟩, ∥ ∥) if and only if ∥A1∥ ∧ ∥A2∥ ∧ . . . ∧ ∥Am∥ ≤ ∥B1∥ ∨ ∥B2∥ ∨
. . .∨∥Bn∥ which we shall write as ∥Γ∥ ≤ ∥∆∥, where Γ is A1,A2, . . . ,Am and
∆ is B1, B2, . . . , Bn.

�eorem 3.1 (Soundness) If Γ⇒ ∆ is derivable in Lattice Logic, then Γ⇒
∆ is valid in every lattice-model.

To prove the theorem mathematical induction on the depth of derivation is
used. For this, we shall check that the axiom is valid and all the rules preserve
validity.

�eorem 3.2 (Completeness) If Γ⇒ ∆ is valid in every lattice-model, then
Γ⇒ ∆ is derivable in Lattice Logic.

To prove this theorem, we �rst construct the Lindenbaum algebra. A rela-
tion ρ is de�ned on the set F of w�s by AρB if and only if A⇒ B and B⇒ A
are derivable. It is easy to check that ρ is an equivalence relation on F. �e
quotient algebra F/ρ is then formed in the usual way with the equivalence
classes [A] for each w� A. It can be shown that the compositions de�ned on
the quotient algebra are independent of the choice of the representatives of
the equivalence classes. Now, it has to be proved that the quotient algebra,
i.e., the Lindenbaum algebra is a lattice. �is proves completeness, since if
Γ ⇒ ∆ is valid in every lattice-model, i.e., if ∥Γ∥ ≤ ∥∆∥ holds for every
member of the class of models and every valuation ∥ ∥, it holds in the Lin-
denbaum algebra with the canonical valuation, i.e., when A is mapped to its
equivalence class [A]. �us [Γ] ≤ [∆] which implies Γ ⇒ ∆ is derivable in
Lattice Logic. A sketch of the proof of this claim is shown below.
Let Γ = A1,A2, ...,Am and ∆ = B1, B2, ..., Bn. �en [Γ] ≤ [∆] means

[A1] ∧ [A2] ∧ ... ∧ [Am] ≤ [B1] ∨ [B2] ∨ ... ∨ [Bn]. So, [A1 ∧A2 ∧ ... ∧Am] ≤

[B1∨B2∨ ...∨Bn]. For simplicity, we write A for A1∧A2∧ ...∧Am and B for
B1 ∨ B2 ∨ ... ∨ Bn. �en [A] ≤ [B], i.e., [A] ∨ [B] = [B]. So, [A ∨ B] = [B].
Hence A∨ B⇒ B and B⇒ A∨ B are derivable. In lattice logic, A⇒ A∨ B
is derivable. Hence, by Cut, A⇒ B is derivable, i.e., A1 ∧ A2 ∧ ... ∧ Am ⇒
B1∨B2∨ ...∨Bn is derivable. UsingCut twice, A1,A2, ...,Am ⇒ B1, B2, ..., Bn
i.e., Γ⇒ ∆ is derivable.

Lattice with negation (L ∼) is an algebra ⟨X , ≤,∧,∨, ∼⟩ where ⟨X , ≤,
∧,∨⟩ is a lattice and ∼ is an unary operator satisfying the property, if a ≤ b
then ∼b ≤ ∼a for all a, b ∈ X. In the corresponding logic LL∼, we consider
all the axioms and rules of LL and also take one extra rule

A⇒ B
(Rule∼)r

∼B⇒∼A
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Here by (Rule∼)r wemean the restricted rule of negation. LL∼ is sound and
complete with respect to the algebra L∼.

�e algebra qBa−{d ,b} is L∼ and here ∼ satis�es ∼∼a = a for all a in the
lattice. In this algebra ∼(a ∧ b) = ∼a ∨ ∼b and ∼(a ∨ b) = ∼a ∧ ∼b. We
use the symbol qBa−{d ,b}, as it is actually quasi-Boolean algebra without
distributivity and boundedness axioms. Corresponding logic is qBl−{d ,b}
which is basically LL∼ with two extra axioms

A⇒ ∼∼A Ax1 ∼∼A⇒ A Ax2

Due to Cut, one can consider only Ax1 and Ax2 as axioms and Ax
A⇒ A need not be taken as axiom here. In this logic, the rule

Γ⇒ ∆
(Rule∼)

∼∆⇒∼Γ
follows for Γ, ∆ ≠ ∅. Here ∼Γ is ∼A1, ∼A2, . . . , ∼An for Γ = A1,A2, . . . ,An.
�is logic is sound and complete with respect to the algebra qBa−{d ,b}.
If we consider distributivity in the algebra qBa−{d ,b}, we get qBa−b. It

is actually quasi-Boolean algebra except boundedness. In the correspond-
ing logic qBl−b we take Ax1 and Ax2 of qBl−d ,b as axioms. Also the rules
LW , RW , LC , RC , R∨, L∧ and (Rule∼) of qBl−d ,b are taken here. But we
replace the rules Cut, L∨ and R∧ by

Γ⇒ A, ∆′ Γ′,A⇒ ∆
Cut′

Γ, Γ′ ⇒ ∆, ∆′

Γ′,A⇒ ∆ Γ1, B⇒ ∆′′
L∨′

Γ′, Γ1,A∨ B⇒ ∆, ∆′′

and

Γ⇒ A, ∆
′

Γ
′′

⇒ B, ∆1
R∧′

Γ, Γ
′′

⇒ A∧ ∆
′

, ∆1

respectively (with the same restriction Γ, Γ
′′

, ∆, ∆
′′

≠ ∅). In this sequent cal-
culus, we have to change the rules to incorporate distributivity. Soundness
and completeness also hold here.

Topological qBa−b, i.e., tqBa−b is qBa−b with an unary operator L sat-
isfying La ≤ a, L(a∧b) = La∧Lb and LLa = La for all a, b in the underlying
set. tqBa5−b is tqBa−b with MLa = La for all a in the set, where M ≡ ∼L∼.
Corresponding logics are tqBl−b which is qBl−b with an unary connective
l and the rules
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Γ′,A⇒ ∆
Ll

Γ′, lA⇒ ∆

lΓ⇒ A
Rl

lΓ⇒ lA

(for Γ, ∆, ≠ ∅).
Another logic is tqBl5−b which is tqBl−b with Ax3,mlA ⇒ lA, where

mA ∶= ∼l∼A. Both are sound and completewith respect to the corresponding
algebras.

Lattice with commutative semigroup (LS) is an algebra ⟨X , ≤,∧,∨, ∗⟩
where ⟨X , ≤,∧,∨⟩ is a lattice and ⟨X , ∗⟩ is a commutative semigroup. Also
if a ≤ b then a ∗ c ≤ b ∗ c for all a, b, c ∈ X. �e axiom and rules of the
corresponding logic L∗ are as follows:

A⇒ A Ax
Γ⇒ A Γ′,A⇒ B

Cut
Γ, Γ′ ⇒ B

A⇒ C B⇒ C
L∨

A∨ B⇒ C

Γ⇒ A

Γ⇒ A∨ B

Γ⇒ B
R∨

Γ⇒ A∨ B

Γ′,A⇒ C

Γ′,A∧ B⇒ C

Γ′, B⇒ C
L∧

Γ′,A∧ B⇒ C

Γ⇒ A Γ⇒ B
R∧

Γ⇒ A∧ B

Γ′,A, B⇒ C
L∗

Γ′,A ∗ B⇒ C

Γ⇒ A Γ′′ ⇒ B
R∗

Γ, Γ′′ ⇒ A ∗ B

where Γ, Γ′′ ≠ ∅. �e deviations from the standard L∨, R∨, L∧ and R∧ rules
of previous logic may be noted.

De�nition 3.3 A LS-model is a LS ⟨X , ≤,∧,∨, ∗⟩ with a valuation ∥ ∥ as-
signing a value ∥p∥ ∈ X to each atomic sentence p in the language.

∥ ∥ is extended to arbitrary formulae by ∥A ∧ B∥ = ∥A∥ ∧ ∥B∥, ∥A ∨ B∥ =
∥A∥ ∨ ∥B∥ and ∥A ∗ B∥ = ∥A∥ ∗ ∥B∥.
A sequent Γ⇒ A is said to be valid in a LS-model (⟨X , ≤,∧,∨, ∗⟩, ∥ ∥)

if and only if ∥A1∥∗∥A2∥∗...∗∥Am∥ ≤ ∥A∥whichwe shall write as ∥Γ∥ ≤ ∥A∥,
where Γ isA1,A2, ...,Am. In the proof of completeness, [Γ] is the∗-operation
of the class of the elements of Γ. It is easy to check that the logic L∗ is sound
and complete with respect to the algebra LS.
Intuitionistic linear algebra (ILA) is the algebra for intuitionistic linear

logic (ILL). An UILA is an algebra where ⟨X , ≤,∧,∨, ∗,⊸⟩ where ⟨X , ≤,
∧,∨, ∗⟩ is a LS and

(i) if a ≤ b then c⊸ a ≤ c⊸ b and b⊸ c ≤ a⊸ c for all a, b, c ∈ X.
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(ii) a ∗ b ≤ c if and only if a ≤ b⊸ c for all a, b, c ∈ X.

It may be noted that in UILA the lattice is not bounded, in general and
⟨X , ∗⟩ is a semigroup, not a monoid. In the corresponding logic UILL, we
consider all axiom and rules of L∗ with two more rules for⊸ (a new binary
connective).

Γ⇒ A Γ′, B⇒ C
L⊸

Γ, Γ′,A⊸ B⇒ C

Γ,A⇒ B
R⊸

Γ⇒ A⊸ B

with the same restriction Γ ≠ ∅.
UILAN is the algebraic structureUILAwith an unary operator negation

(∼) which satis�es the rule: if a ≤ b then ∼b ≤ ∼a for all a, b in the under-
lying set. �e corresponding logic UILLN is the same as the logic UILL
with onemore rule (Rule∼)r (mentioned earlier) for negation (a new unary
connective).
Finally, the algebra UCL-algebra is UILAN with the restriction ∼∼a = a

for all a in the set. UCL-algebra di�ers from classical linear algebra (the
algebra for classical linear logic) in two points:

1) �e lattice may be unbounded.

2) �e binary composition ∗ satis�es semigroup properties, there may
not exist any identity with respect to ∗.

�e corresponding logic UCLL is the same as UILLN , but we replace Ax ,
A ⇒ A, by two axioms Ax1 and Ax2 (mentioned earlier). Soundness and
completeness of last three logics are also obtained.

4. Conclusion
We have established that top element or even a designated set of elements
mimicking “true” of the two-valued logic is not required to form a logic.
�e familiar notion of truth which performs so many other functions and
also performs the function of explaining validity is not of much importance
here. On the other hand, what is philosophically important is that, by the
latter approach attempts are being made to identify the bare essentials that
have to be satis�ed for validity to emerge in an argument. Such an attempt
in understanding the notion of validity by by-passing the use of the notion
of truth will only help in seeing the exact relation between logic and the
standard notion of truth.
Besides, speaking technically, if the validity of an argument is ascer-

tained in terms of the designated elements of a matrix then it can be veri�ed
by the secondmethod with respect to a speci�c algebraic structure obtained
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by the Lindenbaum construction and a special valuation function, viz., the
canonical valuation.
It is also interesting to note that Font says that “the lack of theorems of

the logic B and K can be remedied, if we want, by adding them arti�cially;
enlarge the language with propositional constants ⊺ (truth) or ⊥ (falsum).”
But in our opinion lack of theoremhoodmay not be looked upon as a defect
of the logic that deserves to be “remedied”. On the other hand this fact opens
up new insight about the notion of validity of an argument by delinking it
from the notion of truth.
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