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Abstract: Th e most familiar scheme of diagrams used in logic is known as Euler’s circles. 
It is named aft er the mathematician Leonhard Euler who popularized it in his Letters to 
a German Princess (1768). Th e idea is to use spaces to represent classes of individuals. 
Charles S. Peirce, who made signifi cant contributions to the theory of diagrams, praised 
Euler’s circles for their ‘beauty’ which springs from their true iconicity. More than a 
century later, it is not rare to meet with such diagrams in semiotic literature. Th ey are 
oft en off ered as instances of icons and are said to represent logic relations as they naturally 
are. Th is paper discusses the iconicity of Euler’s circles in three phases: fi rst, Euler’s circles 
are shown to be icons because their relations imitate the relations of the classes. Th en, 
Euler’s circles themselves, independently of their relations to one another, are shown to be 
icons of classes. Finally, Euler’s circles are shown to be iconic in the highest degree because 
they have the relations that they are said to represent. Th e paper concludes with a note on 
the so-called naturalness of Euler’s circles.
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Euler adopts a circle to represent a set. Is Euler’s circle a symbol or 
an icon? Th is is a classic question that shows that the distinction 
between a symbol and an icon is sometimes not clear-cut. (Shin 
2002: 26)

1. Introduction: Iconicity

It is not rare to meet with Euler’s circles in recent literature on iconicity (Ambrosio 
2010; Giardino, Greenberg 2015). One reason might be the central role of diagrams 
in the understanding of iconicity (Stjernfelt 2000). Also, their seemingly indisputable 
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iconicity makes Euler’s circles ideal pedagogical devices to explain and illustrate what 
iconicity stands for. Charles S. Peirce made high claims for this Eulerian scheme of 
diagrams and argued that its “beauty – a violent inappropriate word, yet apparently 
the best there is to express the satisfactoriness of it upon mere contemplation – and 
its other merits, which are fairly considerable, spring from its being veridically iconic, 
naturally analogous to the thing represented, and not a creation of conventions. It 
represents logic because it is governed by the same law” (CP 4.368). Euler’s circles are 
said to represent logic relations “as they really are” but it is not clear why they do so. 
We are rather oft en asked to grant their claimed naturalness and intuitiveness. Th ese 
properties would, however, remain mysterious if we do not inspect the working of 
these diagrams and what they actually represent. Th e aim of this paper is to discuss 
the iconicity of Euler diagrams. We will not dispute their iconicity since there is plenty 
of evidence of it on minimal grounds. Th at would suffi  ce to explain why they do work. 
We will rather attempt to demonstrate their higher iconicity, and as such explain why 
they are allegedly said to work so well. 

As is well-known, the very idea of iconicity is problematic. It has long been 
disputed and still is among Peirceans, semioticians and beyond (Stjernfelt 2011; 
Morgagni, Chevalier 2012). It is not the object of this paper to address these disputes. 
We will rather rely on a basic toolkit of three claims on Peirce’s theory of iconicity 
that we believe are little subject to criticism and would meet general acceptance: (1) 
an icon resembles its object; (2) resemblance needs not to be physical; (3) some icons 
are more iconic than others. Although each claim might give rise to interpretations 
and disapprovals as to its relevance, applicability and scope, the belonging of each to 
Peirce’s theory of iconicity is less disputable and would be granted by most Peirce’s 
scholars. Th ese claims are broadly reported in Peircean literature and can easily be 
evidenced in Peirce’s writings. Although it has compellingly been argued that Peirce 
lacked a consistent theory of resemblance (Chevalier 2015), we still observe that Peirce 
did regularly defi ne iconicity in terms of resemblance or likeness: “[An icon is a] sign 
which stands for something because it resembles it” (CP 3.362). We are also told that 
such resemblance is not necessarily physical: “Many diagrams resemble their objects 
not at all in looks; it is only in respect to the relations of their parts that their likeness 
consists” (CP 2.282). Hence, diagrams and algebraic formulae have equal claims to 
be recognized as icons, as long as they fulfi ll this criterion of homomorphism. Th is 
likeness of relations makes it possible to discover through the icon other truths 
concerning its object. However, equal claims to iconicity do not make all icons equally 
iconic. Th at iconicity is seen in degrees in Peirce’s theory is manifest in his affi  rmation 
that “A diagram ought to be as iconic as possible, that is, it should represent relations 
by visible relations analogous to them” (CP 4.432). 
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Th is toolkit suffi  ces for our inquiry. Incidentally, we would like to add two specifi c 
observations. First, the fact that homomorphism is justifi ably used as a basic criterion 
of iconicity does not infringe the fi rst claim that makes resemblance the source of 
iconicity. Indeed, homomorphism is for Peirce, precisely, a criterion for resemblance, 
understood broadly. It is, thus, disputable to argue against resemblance (Ambrosio 
2010: 152). All one has to keep in mind is that resemblance need not to be physical 
to be an icon, although physical resemblance might help to be more iconic. Second, 
varieties of iconicity have been defi ned in semiotic literature. Of particular interest 
for us, Frederik Stjernfelt (2011) distinguishes between operational iconicity and 
optimal iconicity, which sketchily refer to the ideas of being iconic and being more 
iconic respectively. We do not believe these conceptions necessarily engage distinct 
types of iconicity, but we will regularly refer to them as they address central issues in 
our paper.

2. Some iconicity

Before inspecting the iconicity of Euler’s circles in the following sections, it might 
be useful to briefl y remind what an Euler’s circle is. Th ese circles are named aft er 
mathematician Leonhard Euler who made a thorough use of them in the second 
volume of his Letters to a German Princess (1768). Th e idea looks quite simple: a 
term is represented by a circle. For instance, the term Greek might be represented 
by circle A (Figure 1a). Th en, Propositions could be expressed by the relations of the 
circles:  for instance, if circle B stands for Human, then the proposition “All Greeks 
are Humans” is represented by a diagram where circle A is inside circle B (Figure 1b). 
Finally, arguments involving several propositions can be represented to discover new 
information: If it is known that “All Greeks are Humans” and that “All Humans are 
Mortals”, the representation of these propositions in a diagram, where circle C stands 
for Mortal, shows that “All Greeks are Mortals” as well (Figure 1c).

A BA C
BA 

Figure 1a.                                                Figure 1b.                                                Figure 1c.
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Euler made high claims for this system of diagrams which he believed to be “extremely 
commodious for facilitating our refl ections on this subject, and for unfolding all the 
boasted mysteries of logic, which that art fi nds it so diffi  cult to explain; whereas by 
means of these signs the whole is rendered sensible to the eye” (Euler 1833: 340–341). 
Euler was not alone in his enthusiasm. A century later, when Peirce came to the scene, 
Euler’s circles were commonly used in logic textbooks. 

Th ere seems to be an undisputable agreement as to the iconicity of Euler diagrams. 
Th is iconicity is demonstrated by the homomorphism between the topological 
relations that rule the circles and the logical relations of the terms: “Th e visually 
observable relation – f being inside the circle – resembles the membership relation 
between an object and a set: If object f is a member of set A, then we say f is in set 
A. Because this homomorphic relation is a quite intuitive one, we do not need any 
extra convention for it, unlike with the symbol ‘∈’. Even though it is not clear whether 
a circle itself is a symbolic or an iconic representation of a set, it is clear that the 
relation ‘being a member of ’ is iconically (not symbolically) represented when we 
write ‘f’ inside a circle” (Shin 2002: 26). Th is likeness of relations suffi  ces to establish 
the iconicity of Euler diagrams as a whole. Th ere is no need to address the iconicity of 
the circles themselves, considered independently. Th e minimal criterion of iconicity is 
fulfi lled thanks to this “structural correspondence between topology and semantics” 
(Burton et al. 2014: 54). 

Peirce argued in many instances that “a great distinguishing property of the icon is 
that by the direct observation of it other truths concerning its object can be discovered 
than those which suffi  ce to determine its construction” (CP: 2. 279). Let us, for the sake 
of illustration, consider the syllogism Celarent, previously worked out in Shin (2002: 
32) and Ambrosio (2010: 159-160). Two premises are off ered: “All A are B” and “No B 
is C”. Let circles A, B and C stand for terms A, B and C respectively. Th e fi rst premise is 
represented by drawing circle A inside circle B (Figure 2a). Th e second premise asserts 
that B and C are disjoint. Th is information is added to the previous fi gure by drawing 
circle C outside circle B, regardless of the relation between circles A and C (Figure 2b). 
It will directly be observed on the resulting diagram that “No A is C”.

B
A 

B
A 

C 

           Figure 2a.                                                                            Figure 2b. 
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Th e working of these diagrams seems so simple that one might wonder why it works 
so well. It is oft en argued, as Peirce did in the above quotation, that the force of these 
diagrams comes from their naturalness. Th ey are said to represent relations as they 
“really” are. But this would just push the question further: where does that naturalness 
spring from and why would logic and space be governed by the same laws? Aft er all, 
our logical conceptions are not necessarily spatial. Umberto Eco argues that “[t]he 
fact of being or not being passionate is not a matter of space. It is at most, to speak 
in traditional logic words, a matter of possessing or not possessing a given propriety. 
Why does traditional logic translate this possession and non-possession in terms of 
belonging and non-belonging to a class? By pure convention” (Eco 1980: 228). 

Eco rightly reminds us that concepts might very well be understood as the 
possession of proprieties (or attributes) rather than the belonging to a class. Actually 
both interpretations have long been used in logic and were known under diff erent 
denominations. For convenience, we will refer to them as ‘intension’ and ‘extension’, 
although Peirce himself usually adopted the Hamiltonian terms ‘depth’ and ‘breadth’ 
(Moore et al. 1984: 74). Broadly understood, ‘intension’ refers to the attributes that are 
involved in a term while extension refers to the individuals to whom the term refers 
(Venn 1894: 453–476; Keynes 1906: 22–47; Shearman 1906: 133–142). Although Eco 
suggests in the above quotation that the extent of a term would be a conventional 
derivation of its intent, both interpretations seem rather equally legitimate to express 
a term: “In speaking thus of intension and extension as if they could be regarded 
apart, we must of course remember, not merely that the existence of each (generally 
speaking) postulates the existence of the other, but that this existence is actually more 
or less in evidence, and can only be neglected by an act of conscious abstraction. 
Th at is, we cannot help knowing, in the one case, that a class, actual or potential, 
corresponds to each group of attributes, just as in the other we know that each class 
was, or might be, determined by its distinctive attributes. But in each case alike we 
can, for the purpose of discussion, consider one aspect alone” (Venn 1894: 455).

As far, we described Euler diagrams that do represent terms in their extent. Since 
there are no a priori reasons to favour one interpretation over the other, it would 
be interesting to observe what a scheme of spatial diagrams would look like if one 
appeals to intent. Let there be a term B whose intent is the attribute b. Now, let us have 
a term A, whose attributes are b and a. In extension, term A gathers the individuals 
who have both properties a and b. Hence, A is included in and has a smaller extent 
than B. In intension however, A is “wider” since its group of attributes {a, b} includes 
that of B {b}. “Th e more the intension, the less the extension, and conversely” (Venn 
1894: 470). Th e intensional interpretation might look awkward to the modern reader, 
but history shows that such schemes did exist and that they were even favoured by 
some logic traditions (Dipert 1991: 142–147). For instance, Leibniz worked with 
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both interpretations although he demonstrated a “mechanical and almost instinctive” 
preference for intension (Couturat 1901: 23). 

In a diagrammatic scheme founded on intension, a term A (respectively B) 
is represented with a circle that gathers all the attributes that are predicated of 
A (respectively B). Hence, a proposition asserting that “Every A is B” would be 
represented by a circle B inside a circle A (Fig. 3-a). Indeed, any subject predicated 
with all the attributes of A necessarily is also predicated with all the attributes of B. 
It might be said that the relation of the circles refl ects the relation of the terms, and 
as such, this intensional representation has equal claim for minimal iconicity as the 
extensional representations previously described. 

A
B 

A
B 

C 

        Figure 3a.                                                                           Figure 3b.                                              

For the sake of comparison, let us now consider an intensional interpretation of the 
example discussed above: Celarent. We are told that “Every A is B” and that “No B 
is C”. Th e fi rst premise is represented in Figure 3a. Now, the second premise asserts 
that B and C have disjoint groups of attributes. It follows that circle C must be outside 
circle B. But it is not clear what the relation between circles A and C should be. Let 
us consider a subject X which is A (i.e. is predicated with all the attributes of A). 
Th is subject X is also B (because it also necessarily has all the attributes of B). Since 
no subject can be both B and C, it follows that X cannot be C. Hence, A and C must 
be disjoint (Figure 3b). We should observe, however, that this logical impossibility 
is physically possible: one might for instance draw circle C inside circle A without 
violating the premises. Hence, a diagrammatic solution would not explain why the 
disjointness of B and C would necessarily keep C outside A. Louis Couturat invokes 
a “kind of repulsion, rather moral than physical” between terms B and C, that resists 
geometrical representation (Couturat 1901: 22). 

Th e failure of intensional diagrams to work as effi  ciently as extensional ones 
might come as a surprise given that they similarly fulfi l the minimal requirements 
of iconicity. Th ere are no a priori reasons to prefer the interpretation of a term A as 
extensively included in B rather than intensively containing it. Both interpretations 



 Is Euler’s circle a symbol or an icon? 603

lead to diagrams where relations of terms are represented by relations of circles. 
So what went wrong? We would suspect that there is something about extension 
that makes it lend itself better than intension to spatial formalization. In order to 
explore this path, we need to consider how the extension of a term is represented. 
As far we addressed the iconicity of Euler’s circles, merely in their relations to one 
another, regardless of the semiotic properties of a single Euler’s circle considered 
independently. In the following, we will rather inspect how an Euler’s circle stands for 
a term, regardless of its relations to other circles. 

3. More iconicity

Before proceeding to how a circle actually represents a class, it is crucial to consider 
two concepts that are more complex than they might appear at fi rst: classes and circles. 
A class, understood as the extension of a term, is a collection of the individuals to 
whom the term refers. Th e formation of classes is performed with either of two mental 
processes known to 19th-century logicians as classifi cation and division (Carroll 
1897: 1–4; Keynes 1906: 441–449). In classifi cation, individuals are put together 
in a group as to form a class (Figure 4a) while division forms sub-classes out of an 
existing class (Figure 4b). In our illustrations, both processes yield to the formation 
of the same class that has three individuals. It will be observed that the state of the 
outer individuals diff ers: division simultaneously makes them form a complementary 
class while classifi cation does not. Negative terms have long been a matter of dispute 
in traditional logic and their treatment signifi cantly impacted the history of logic 
diagrams (Moktefi , Shin 2012: 632–637). However, this issue should not concern us in 
this paper, since Euler’s diagrams as we discuss them represent classes that are formed 
by classifi cation and, thus, do not pay attention to the outer class.

                      Figure 4a.                                                                        Figure 4b.                   

Classes, as defi ned above, should not be confused with sets as commonly understood 
in modern theories of collections. A class is formed by individuals while a set contains 
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them. Inversely, individuals are part of the class they form but belong to their set. We 
shall illustrate this crucial diff erence by observing a whole cake in a box (Figure 5a). Let 
the cake be divided into four parts (Figure 5b). Th ose parts form the cake but are said 
to be contained in the box. It would be awkward to say about those parts that they are 
contained in the cake. Similarly, individuals are not inside a class, they are the class. Now 
suppose one part alone is left  (Figure 5c). Presently, that part is the cake. Similarly, one 
does not distinguish an individual from a singleton-class: the (lonely) individual is the 
class. Hence, class theory is a ‘part-whole theory’ of collections that does not diff erentiate 
relations of membership and inclusion, while set theory does. Now imagine all parts 
disappeared (Figure 5d). We would say that the cake does not exist anymore while the 
box will be said to be empty. Classes and sets stand similarly: a class does not exist when 
there are no individuals to form it while a set does and is simply said to be empty. Th ese 
diff erences are crucial to understand the development of modern logic. Peirce made 
signifi cant contributions to both theories of collections, but his logic still worked mainly 
with class theory (Dipert 1997; Grattan-Guinness 1997: 29–30).

            Figure 5a.                          Figure 5b.                      Figure 5c.                          Figure 5d.                   

As intuitive as it might look, the idea of a circle also deserves some explanation. 
Indeed, we hastily tend to think of a circle as a “circular line” (Figure 6a) while it 
should be thought of as a space. In Euclid’s Elements, a circle is defi ned as “a plane 
fi gure contained by one line such that all the straight lines falling upon it from one 
point among those lying within the fi gure are equal to one another” (Heath 1908: 
153). Th e line that “contains” the circle is not formally defi ned but is labelled its 
‘circumference’ (Heath 1908: 154). Th e common confusion between the circle and its 
circumference is well documented in the history of mathematics (Goldstein 1989). 
For our purpose, it is important to keep in mind that a circle is a plane fi gure. As such 
it is formed by the points within its circumference. Th at circumference itself does not 
exist as a separate object. It simply contains all the points that are the furthest from 
the centre of the circle, but are still part of that circle. It is for pure convenience that 
we commonly represent it as a circular line. Hence, we should not fail to keep in mind 
that the circle is what is within the curve, including the curve (Figure 6b). Th e dots 
within the ‘circular line’ are not inside the circle, they are the circle.
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                 Figure 6a.                                                                            Figure 6b.                   

Now that we have in mind what classes and circles really are, we can better undertake the 
crucial task of understanding how a circle stands for a class. Surprisingly, this question is 
seldom addressed in literature on the ground that it is the arrangement of the circles, not 
the circles themselves, which makes Euler diagrams iconic. As far as it has been possible 
to check, Peirce himself did not openly address the question. Yet, some scholars hold 
him to be of the opinion that the correspondence between classes and circles is purely 
conventional (Dipert 1996: 389). Eco has the merit of clarity: “But is belonging to a class 
a spatial fact? Sure it is not, except the fact that I might be defi ned to belong to the class 
of all those who are located in a certain place; but if I belong to the class of those who are 
passionate, this class would be an abstraction, not a space. Why, in the representation 
with circles, does the class become a space? By pure convention” (Eco 1988: 228–229). 
Th ere is a delightful irony in this argument: although meant to evidence that belonging 
to a class is not a spatial fact, Eco himself opens the way for one exception, “the fact that I 
might be defi ned to be belong to the class of all those who are located in a certain place”. 
Th at is precisely how Euler’s circles proceed.

Let us go back to Euler and how he introduced his circles. Th ey fi rst appear in 
Letter 102, dated 14 February 1761, where he explains how to represent the four 
traditional types of propositions with the help of his circles: “Th ese four species of 
propositions may likewise be represented by fi gures, so as to exhibit their nature 
to the eye. Th is must be a great assistance towards comprehending more distinctly 
wherein the accuracy of a chain of reasoning consists. As a general notion contains 
an infi nite number of individual objects, we may consider it as a space in which 
they are all contained. Th us, for the notion of man we form a space [...] in which 
we conceive all men to be comprehended” (Euler 1833: 339). We should not pass 
these constructions too hastily. Th e idea is not to merely establish a correspondence 
between the collection of individuals and a space, but rather to gather the individuals 
within that space. For the class of men, one has to gather all men in a single space. Th at 
space is its Euler circle. It does not matter whether that gathering is actually feasible 
since we are proceeding by the mental process of classifi cation. Th e class itself collects 
“possibilities of a certain description” and is, as such, an abstraction (CP 4.351, 4.370). 
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It might be rightly objected that Euler explicitly holds his circles to represent the 
“general notion” of man rather than, properly, the class of men. Th is is unquestionably 
true. Euler’s syllogistic theory itself is mainly described intensionally. However, Euler 
also explicitly worked out his diagrams extensionally. As suspicious as this might look, 
Euler was not unique in this respect. Th e logician William S. Jevons, for instance, 
proceeded similarly (Venn 1894: 453; Shearman 1906: 7). Th is simply shows that those 
logicians, despite their intentional approach to logic, understood that extension still 
lends itself better to logical calculus, be it diagrammatic or symbolic. Th e extension 
of a term is formed by a physical gathering of its individuals like a fl ock of sheep. Th is 
fl ock covers a space. Th at space is the Euler’s circle of that class. Hence, that Euler’s 
circle truly is the space on which the extension stands. Th e division of that space 
unsurprisingly yields a division of the space on which the class physically stands, not 
because they imitate each other’s spatial properties but because they are the one and 
very same space.

It might also reasonably be objected to our reading that a group of two lambs, 
for instance, does not look at all like a circle. But it must be kept in mind that it is 
not properly a class of lambs that is meant to be represented by Euler’s circles, but a 
class of (whatever) individuals. Every dot of the circle (not inside the circle) represents 
an individual of the class. Hence, although a lamb might not look at all like a bike, 
yet a class of lambs looks exactly like a class of bikes. Th e labelling of the classes is 
indeed performed by conventional marks (as will be discussed later), but that does 
not aff ect the iconic representation of the class itself, the same way names of cities and 
countries are inserted on maps that are iconic themselves. Furthermore, the shape of 
the fi gures does not matter and need not to be circles at all. Euler warned us that “it 
is of no importance of what fi gure they are”, as long as they are spaces (Euler 1833: 
340). Hence, the appeal to circles is for pure convenience, although it impacts on the 
understandability of the diagram (Blake et al. 2014). Actually, it is even possible to 
imagine a class bounded in several spaces but that would be an unnecessary, useless 
and tedious practice. Continuous fi gures are thus preferred (Moktefi  et al. 2014). 
Th ere are no considerations of size either, since it is the topological (not the metrical) 
properties of the diagrams that are of interest to us. In a sense, an Euler circle might 
be conceived as a map of the gathering of individuals in a territory they shape. Th e 
circumference is the border of the territory. Sub-classes would be depicted as regions 
of that territory. Such maps do not need to have metric properties; topology and 
structure suffi  ce (Stjernfelt 2000: 374–375).
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4. Highest iconicity

Euler’s circles were held to resemble a class on the ground of the structure relations 
they share. Th is homomorphism suffi  ces to establish the iconicity of Euler’s circles and 
to explain their ability to carry syllogistic reasoning. Symbolic notations share those 
structure relations as well, and thus have equal claim to iconicity. Yet Euler diagrams 
were held to exhibit those relations better: “A comparison of Euler’s diagram and 
the notation “S ∈ M” shows that the diagram represents the relation of membership 
between an object and a set in a more natural and immediately observable way. Strictly 
speaking, however, no physical resemblance is noticed between the diagram and the 
state of aff airs that it stands for” (Ambrosio 2010: 155). It was not clear where that 
naturalness spring from if the diagrams had no physical resemblance to their objects. 
In the previous section, however, we argued that the very idea of an Euler’s circle is 
achieved on the grounds of a physical resemblance. Th at does not aff ect their shared 
structure relations but provides a source that might explain the naturalness of Euler’s 
circles and their claimed superiority over symbolic notations to exhibit logic relations. 

Let us consider inclusion. To express the inclusion of a class A in another class B, 
roughly corresponding to the proposition: “All A are B”, several symbolic techniques 
might do. Early symbolic logicians considered the equation to be the cornerstone of 
logic, and as such attempted to express this relation of inclusion with the expression: 
‘A = A.B’. Th is notation actually states the identity of two classes: A and A.B, the latter 
being the portion common to A and B. Another solution, adopted by Peirce and 
commonly used since, consists in introducing a new symbol (‘⊂’ for instance) to mark 
inclusion. Hence, we would write: ‘A ⊂ B’. Th is notation avoids the replication of A, 
but still requires the introduction of a conventional sign, as suggestive as it might be, 
to express the relation. Th is does not prevent these symbolic expressions to be icons 
of the logic relation they express since they do fulfi ll the homomorphism criterion. 
Let us now turn to Euler diagrams and inspect how they represent the relation of 
inclusion. Our purpose is to demonstrate that they hold a much higher degree of 
iconicity and that they do not appeal to convention in order to represent inclusion. 

To reach our purpose, we need to introduce the concept of a ‘Line of identity’ 
that Peirce used in his Existential graphs and held to be iconic in the highest degree 
(Pietarinen 2006: 115–118; Stjernfelt 2011: 400–406). Without engaging in an 
exposition of Peirce’s existential graphs, let us sketch what a ‘Line of identity’ is. First, 
let there be two dots on a sheet of paper to denote two individuals: ‘Lewis Carroll’ 
and ‘Charles L. Dodgson’. Th e Line of identity connects the two dots to indicate that 
the individuals are identical (Figure 7a). Peirce claimed that the “line of identity is, 
moreover, in the highest degree iconic. For it appears as nothing but a continuum of 
dots, and the fact of the identity of a thing, seen under two aspects, consists merely 
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in the continuity of being in passing from one apparition to another.” (CP 4.448). Th e 
identity line prevents from using a conventional sign to indicate identity. It rather 
suggests that the two dots at its extremities are the very same object that moves 
along the line. As effi  cient as this innovation is, one might still be surprised to see 
Peirce praise it for being iconic “in the highest degree”. Indeed, one might imagine 
that a higher iconicity would simply be reached if the very same dot denotes both 
individuals (Figure 7b). While the former scheme (Figure 7a) affi  rms that “Lewis 
Carroll is identical to Charles L. Dodgson”, the latter scheme (Figure 7b) rather asserts 
that “Lewis Carroll is Charles L. Dodgson”. Hence, the identity is not represented 
anymore; the identity is. Euler diagrams possess precisely this even higher degree of 
iconicity, as we will show.

Lewis 
Carroll

Charles L. 
Dodgson

Lewis 
Carroll Charles L. 

Dodgson

                Figure 7a.                                                                       Figure 7b.     

For the sake of transition, let us fi rst illustrate our case with linear diagrams that were 
popular among traditional logicians (Englebretsen 1998; Bellucci et al. 2014; Moktefi , 
Shin 2012: 629–632). Leibniz designed such diagrams for syllogistic reasoning 
(Couturat 1903: 292–298). Th e principles are simple: terms are represented by parallel 
lines, and spatial relations between lines represent the logical relations between terms. 
In order to represent proposition “All A are B”, one simply draws parallel segment 
lines A and B, representing terms A and B, respectively, in such a way as to have 
segment line A strictly under segment line B (Figure 8a).

B

A B
A

r t s

                 Figure 8a.                                                                      Figure 8b.                   

One might naively think that these diagrams diff er from Euler diagrams in that it is the 
position of the segments to each other, not their topological relations, that indicates 
the logical relations. However, a close look shows that these linear diagrams actually 
proceed exactly as Euler’s do: fi rst, individuals are represented by dots and classes 
gather those individuals on lines (rather than spaces); then, relations of classes are 
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expressed by the topological relations of the segments. For instance, proposition “All 
A are B” asserts that class A is part of class B. Similarly, line segment A is shown as part 
of line segment B. Th is is not evidenced by the position of the segments, but rather 
by the vertical dotted lines which set the limits of the segment under consideration. 
Th ose dotted lines extract a segment which is part of B, and that segment is said to 
be A. One could freely move line segment A far away from line segment B (in any 
direction), those dotted lines would still secure the identity of A and the “extracted” 
part of B. Hence, those dotted lines act exactly as Peirce’s lines of identity, although 
they are less iconic because of their discontinuity. At this stage, the idea of making 
this scheme of diagrams more iconic by making the segments coincide suggests itself, 
as we did for the dots in the line of identity. Th at is easy to achieve by keeping line 
segment A within line segment B (Figure 8b). In this new scheme, line segment rt 
(which stands for class A) is part of line segment rs (which stand for class B). Contrary 
to the fi rst scheme where each dot of segment A was shown as identical to a dot from 
part of segment B, this second scheme shows that every dot of segment A actually 
is a dot of segment B. As such, the second scheme is more iconic than the fi rst. Now 
the interesting part of the story is that this second scheme was also known to Leibniz 
(Gerhardt 1890: 228–247). However, Leibniz preferred the fi rst scheme, despite the 
loss of iconicity, presumably for its visual clarity (Couturat 1901: 25–26). Th e second 
scheme might prove diffi  cult to manipulate, notably with further terms, unless one 
appeals to colours, for instance, to distinguish diff erent segments. Still, logicians using 
parallel lines do accept the co-existence of segments on the same line when confusion 
is not possible. For instance, the representation of proposition “No A is B” can be 
simply achieved by drawing two disjoint segments A and B on the same line (Figure 
9) (Lambert 1764: 113). 

A B 
                                                                         Figure 9.                                    

Linear diagrams of the second scheme are truly linear in the sense of being one-
dimensional, with all segments on the same line. On the contrary, the fi rst scheme 
is bi-dimensional since segments are on parallel lines. Consequently, it replicates the 
segments that stand for the joint portions of the classes. Th at replication is needless 
with Euler’s circles which are already bi-dimensional.
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Let us consider proposition “All A are B”, which asserts that A is part of B. If we were to 
replicate the circle that stands for the joint portion (i.e. A), in the same style as linear 
diagrams, we would get a diagram where A would be represented by two circles whose 
identity would be expressed by the (dotted) lines of identity (Figure 10a). In a way, this 
diagram proceeds in the same way as the symbolic expression “A = A.B”. Although it 
does fulfi ll its purpose, its loss of iconicity is not compensated by any gain of visual 
aid. Indeed, our classic Euler diagram for the same proposition clearly shows that 
circle A is distinctly part of circle B (Figure 10b). One might think that this diagram 
is conceived similarly to the notation ‘A ⊂ B’. However, that would be misleading. 
Indeed, in these Euler diagrams, every dot of circle A is a dot of circle B. Th e inclusion 
of A in B is expressed by the fact that the individuals that form A simultaneously form 
part of B. As such, classic Euler diagrams possess more than the ‘highest degree’ of 
iconicity. Th ey dispense with the replication of the classes and with any conventional 
signs to represent the relation. Th ere is no need to represent the inclusion of A in B 
because it is granted by the identity of A and part of B. And there is no need to express 
the identity of A and part of B because A is physically part of B. Th is result should not 
surprise us since we know that class theory does not distinguish membership and 
inclusion, as previously explained. Hence, we would expect the inclusion of a class in 
another to be represented in a manner similar to the ‘membership’ of an individual 
in a class. But we held in the previous section that ‘membership’ stands on physical 
resemblance. Hence, we argue here that inclusion stands on the same grounds. Once, 
Euler diagrams are conceived as maps of territories, one can easily see how some 
territories are part of larger ones. It suffi  ces to single out Estonia and Europe on the 
world map to observe directly that the former is part of the latter, without the appeal 
to any convention to represent this relation. Similarly, in our Euler diagram, once 
classes A and B are formed, A will be necessarily found to be part of B. Euler diagrams 
do not represent relations between classes; rather, they have those relations.
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5. Conclusion: pure iconicity

In this paper, we early adhered to the iconicity of Euler’s circles on the ground of their 
structure relations. However, we claimed that this homomorphism does not suffi  ce to 
explain their force over symbolic notations. Th en, we argued for a physical resemblance 
between classes and circles in the construction of Euler’s circles. We demonstrated 
that this iconicity dispenses with conventional signs to express relations, as is found 
in symbolic notations. Th e comparison of Euler’s circles with what Peirce held to be 
the highest degree of iconicity demonstrated that Euler’s circles were even higher. 
Th ese successes might encourage us to wonder imprudently whether Euler diagrams 
would stand for pure icons. Th e answer is, naturally, negative. Peirce warns us that a 
“diagram is a representamen which is predominantly an icon of relations and is aided 
to be so by conventions. Indices are also more or less used” (CP 4.418). For if a circle 
is observed ink-on-paper, several readings are possible (Stjernfelt 2000: 366). Th e 
diagram still needs an aid to express what it stands for. In Euler’s circles non-iconic 
elements are important: dots stand for individuals in a rather indexical mode and 
classes are labelled with marks that are conventionally written on the space (as Euler 
did) or its circumference (as was Peirce’s use). 

Th ese conventions do not harm to the naturalness of the diagrams. It might be 
important at this stage to insist on the fact that this naturalness is not necessarily 
natural. Th is claim might look awkward at fi rst but will easily be understood if we 
think of a picture that truthfully reproduces a landscape. Such a picture will be said 
to hold the naturalness of the landscape although it cannot be said to be natural. 
Th e picture is the result of technical devices used to shape the picture. Similarly, an 
Euler diagram is constructed in such a way as to represent logic relations naturally. It 
does not mean that logic and space are one and the same. We already quoted Peirce’s 
claim that Euler’s scheme “represents logic because it is governed by the same law”. 
Furthermore, Peirce argues that “as far as logical dependence goes, the validity of 
the syllogism and the property of the Eulerian diagram depend upon a common 
principle. Th ey are analogous phenomena neither of which is, properly speaking, the 
cause or principle of the other” (CP 4.355). Hence, to construct a notation that would 
carry syllogistic reasoning in its own, one has to construct it in such a way as to share 
that “same law” or “common principle” that Peirce alluded to. 

Euler actually argued that the foundation of all valid syllogistic forms “is reduced 
to two principles, respecting the nature of containing and contained: I. Whatever is 
in the thing contained, must likewise be in the thing containing. II. Whatever is out of 
the containing, must likewise be out of the contained” (Euler 1833: 350). Th ese laws 
seem to also govern the topological relations between (his) circles. And so do many 
symbolic notations. Th is structure relation (i.e. minimal iconicity) suffi  ces to explain 
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why Euler’s diagrams work for syllogistic. But what makes them work so well is their 
highest iconicity thanks to the physical resemblance that has been created between 
the circles and the classes. It is diffi  cult to attribute this view to Peirce, although his 
claim that Euler’s circles were “veridically iconic” suggests a higher degree of iconicity 
than homomorphism. Eco objected to Peirce’s claim: “Peirce writes that the beauty of 
these diagrams comes from their “true iconic” status (4.368), an expression that might 
suggest that the spatial confi guration of the diagrams imitates a real spatial situation. 
If it was so, Peirce’s iconism would be truly ingenious; because even if diagrams do 
show visually interiority and exteriority relations, that doesn’t mean that those spatial 
properties are icons of other spatial properties!” (Eco 1988: 228). We attempted in this 
paper to contend that Euler diagrams are constructed in such a way as to truly imitate 
a spatial relation, thanks to a mental process that Peirce perfectly describes: “Imagine 
the entire collection of men and nothing else to be enclosed in the imaginary circle, 
M” (CP 4.350).

Our claim would be misunderstood if it is taken to mean that logic and space 
are governed by the same laws. On second thoughts, Euler’s circles do not work so 
well. History shows that they have regularly been adjusted, extended and improved 
by successive logicians, including Peirce himself. Th ey are inappropriate for negative 
terms and impractical when the number of terms increases (Moktefi , Shin 2012). 
We previously argued that intensional interpretations in logic resist Euler’s circles, 
but the argument could easily be converted: Euler’s circles seem unsuitable for 
intensional interpretations. Hence, we should keep in mind that it is only a specifi c 
province of logic that is under consideration and it is within that particular region 
that those laws are considered. Furthermore, as is argued by philosophers of 
mathematics, formalizations, like other forms of mathematization, do reshape their 
objects (Roux 2011; Dutilh Novaes 2012). Th e use of Euler’s circles opened the way 
to further extensional logics founded on the relations between classes rather than the 
predication of an attribute to a subject. Later on, when logician John Venn reformed 
Euler’s circles, he made them stand for new logic objects, known as compartments, 
rather than classes (Moktefi  2013). Th e moral of the story is that when we reason with 
logic diagrams, we do not merely search for the best diagrams to reason with, we also 
look for the best logic to diagram with.1

1  Th is paper draws upon research supported by Estonian Research Council PUT 267 
“Diagrammatic mind: Logical and communicative aspects of iconicity”, Principal investigator 
Ahti-Veikko Pietarinen. Parts of this paper were previously presented at several international 
conferences, notably: L’Argumentation dans les images scientifi ques, les images scientifi ques dans 
l’argumentation (Università Iuav di Venezia, Venice, Italy, 16–17 April 2010), Extended problem 
solving symposium (Aarhus University, Denmark, 24–25 January 2013), Icon: the Helsinki 
metaphysical club workshop (University of Helsinki, Finland, 10 September 2014), Visual 
learning: Pictures, parables, paradoxes (Budapest University of Technology and Economics, 
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Круг Эйлера – символ или иконический знак

Наиболее известные диаграммные схемы, используемые в логике, называются кругами 
Эйлера. Они изобретены математиком Леонардом Эйлером, который популяризировал 
их в своих Письмах к немецкой принцессе (1768). Круги используются для обозначения 
объема понятий и множеств элементов. Чарльз С. Пирс, который внес значительный 
вклад в теорию диаграмм, похвалил круги Эйлера за их «красоту», которая является 
следствием их истинной иконичности. И в наше время можно нередко встретить 
такие диаграммы в семиотической литературе. Часто их приводят в качестве при-
мера иконических знаков, уточняя, что они представляют логические связи в их 
натуральном виде. Данная работа рассматривает иконичность кругов Эйлера в трех 
фазах. Сначала в работе утверждается, что круги Эйлера являются иконами, потому 
что их отношения подражают отношениям между классами. Затем в работе показано, 
что сами круги Эйлера, вне зависимости от их отношений друг с другом, являются 
иконами классов. Наконец, круги Эйлера в высшей степени иконичны, потому что у 
них есть те отношения, которые они представляют. Статья завершается примечанием о 
так называемой натуральности кругов Эйлера.

Kas Euleri ring on sümbol või ikoon?

Loogikas kasutatavat kõige tuntumat diagrammiskeemi tuntakse Euleri ringide nime all. 
Neile on antud nimi matemaatik Leonhard Euleri järgi, kes populariseeris neid oma Kirjades 
saksa printsessile (1768). Nende mõte on esindada indiviidide klasse ruumiliselt. Charles S. 
Peirce, kes panustas oluliselt  diagrammide teooriasse, kiitis Euleri ringe nende “ilu” tõttu, mis 
tuleneb nende tõelisest ikoonilisusest. Ka rohkem kui sajand hiljem võime semiootika-alases 
kirjanduses kohata taolisi diagramme. Sageli esitletakse neid ikoonide esinemisjuhtudena ja 
öeldakse, et nad esindavad loogilisi seoseid nii, nagu need loomupäraselt on. Käesolevas artiklis 
käsitletakse Euleri ringide ikoonilisust kolmes järgus. Kõigepealt näidatakse, et Euleri ringid 
on ikoonid, sest nende suhted matkivad klassidevahelisi suhteid. Seejärel näidatakse, et Euleri 
ringid ise, sõltumatult oma suhetest üksteisega, on klasside ikoonid. Lõpetuseks näidatakse, et 
Euleri ringid on kõrgeimal määral ikoonilised, sest neil on need suhted, mida nad väidetavalt 
esindavad. Artikli lõpetab märkus Euleri ringide nn loomulikkuse kohta.


