Õpilaste loodusteadusliku kirjaoskuse tasemete muutus gümnaasiumiõpingute jooksul

Autorid

  • Miia Rannikmäe
  • Regina Soobard
  • Priit Reiska
  • Arne Rannikmäe
  • Jack Holbrook

DOI:

https://doi.org/10.12697/eha.2017.5.1.03

Märksõnad:

loodusteaduslik kirjaoskus, kontekstipõhine hindamine, mõistekaardi meetod, teaduse olemus

Kokkuvõte

Uurimuse eesmärk on longituuduuringule tuginedes kirjeldada gümnaasiumiõpilaste loodusteadusliku kirjaoskuse kujunemise protsessi dünaamikat. Töös kasutatud originaalinstrument koosneb neljast osast: neljast kontekstipõhisest ülesandest, teaduse olemuse ja enesehinnangu küsimustikest ning mõistekaardist. Representatiivse valimiga uuringus osalesid õpilased 42 koolist. Uurimistulemustest ilmneb, et õpilaste loodusteadusliku kirjaoskuse tase kasvab gümnaasiumi jooksul minimaalselt. Õpilaste tulemused 10. ja 12. klassis on sarnased nii aineteadmiste reprodutseerimises, kõrgemat järku kognitiivsetes oskustes, teaduse olemuse mõistmises, enesehinnangus ja ka mõistekaardi kasutamises. Seega, kuigi õppekava on kompetentsuspõhine, näitavad uurimistulemused, et õpilaste loodusteadusliku kirjaoskuse taseme muutus tuleneb pigem aineteadmiste juurdekasvust kui muudest komponentidest. Seetõttu on vaja alustada hariduspoliitilist diskussiooni loodusteaduslike õppeainete õpetamise nüüdisajastamiseks.

PDF Summary

Allalaadimised

Download data is not yet available.

Viited

Afonso, A. S., & Gilbert, J. K. (2010). Pseudo-science: A meaningful context for assessing nature of science. International Journal of Science Education, 32(3), pp. 329–348. https://doi.org/10.1080/09500690903055758

Aikenhead, G. S., & Ryan, A. G. (1992). The development of a new instrument: "Views on Science-Technology-Society" (VOSTS). Science Education, 76(5), 477–491. https://doi.org/10.1002/sce.3730760503

Ausubel, D. P. (1968). Educational psychology: A cognitive view. New York: Holt, Rinehart & Winston.

Baartman, L., & Ruijs, L. (2011). Comparing students’ perceived and actual competence in higher vocational education. Assessment and Evaluation in Higher Education, 36(4), 385–398. https://doi.org/10.1080/02602938.2011.553274

Bennett, J., Lubben, F., & Hogarth, S. (2007). Bringing science to life: A synthesis of the research evidence on the effects of context-based and STS approaches to science teaching. Science Education, 91(3), 347‒370. https://doi.org/10.1002/sce.20186

Biggs, J. B., & Collis, K. F. (1982). Evaluating the quality of learning: The SOLO taxonomy (Structure of the Observed Learning Outcome). New York: Academic Press.

Bolte, C., Streller, S., Holbrook, J., Rannikmae, M., Hofstein, A., Mamlok Naaman, R., & Rauch, F. (2012). Introduction into PROFILES project and its philosophy. In C. Bolte, J. Holbrook, & F. Rauch (Eds.), Inquiry-based Science Education in Europe: Reflections from the PROFILES Project (pp. 31–41). Berlin: Freie Universität Berlin. Retrieved from http://www.profiles-project.eu/res/Conference_2012/PROFILES_Book_final_October2012.pdf.

Bramwell-Lalor, S., & Rainford, S. (2013). The effects of using concept mapping for improving advanced level biology students’ lower- and higher-order cognitive skills. International Journal of Science Education, 36(5), pp. 839–864. https://doi.org/10.1080/09500693.2013.829255

Brinkerhoff, J. L., & Booth, G. M. (2013). The effect of concept mapping on student achievement in an introductory non-majors biology class. European International Journal of Science and Technology, 2(8), 43–72.

Bybee, R. W. (1993). Reforming science education: Social perspectives and personal reflections. New York: Teachers College Press.

Bybee, R. W. (1997). Toward an understanding of scientific literacy. In W. Gräber & C. Bolte (Eds.), Scientific literacy: An international symposium (pp. 37–68). Kiel: Institute for Science Education at the University of Kiel.

Cañas, J. A., Bunch, L., Novak, J. D., & Reiska, P. (2013). Cmapanalysis: An extensible concept map analysis tool. Journal for Educators, Teachers and Trainers, 4(1), 36–46.

Cañas, J. A., Novak, J. D., & Reiska, P. (2015). How good is my concept map? Am I a good Cmapper? Knowledge Management & E-Learning, 7(1), 6–19.

Carnap, R., Hahn, H., & Neurath, O. (1973). The scientific world conception: The Vienna Circle. In M. Neurath & R. S. Cohen (Eds.), Empiricism and sociology (pp. 299–318). Dordrecht: Kluwer.

Chen, S. (2006). Development of an instrument to assess views on nature of science and attitudes toward teaching science. Science Education, 90(5), 803–819. https://doi.org/10.1002/sce.20147

Choi, K., Lee, H., Shin, N., Kim, S.-W., & Krajcik, J. (2011). Re-conceptualization of scientific literacy in South Korea for the 21st century. Journal of Research in Science Teaching, 48(6), 670–697. https://doi.org/10.1002/tea.20424

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale: Lawrence Erlbaum Associates.

Croasdell, D. T., Freeman, L. A., & Urbaczewski, A. (2003). Concept maps for teaching and assessment. Communications of the Association for Information Systems, 12, 396–405.

Daley, B. J. (2004). Using concept maps with adult students in higher education. In A. J. Cañas, J. D. Novak, & F. M. González (Eds.), Concept maps: Theory, methodology, technology (Vol. 1, pp. 183–190). Navarra: NovaText.

Feinstein, N. (2010). Salvaging science literacy. Science Education, 95(1), 168–185. https://doi.org/10.1002/sce.20414

Gilbert, J. K. (2006). On the nature of context in chemical education. International Journal of Science Education, 28(9), 957–976. https://doi.org/10.1080/09500690600702470

Gilbert, J. K., Bulte, A. M. W., & Pilot, A. (2011). Concept development and transfer in context-based science education. International Journal of Science Education, 33(6), 817–837. https://doi.org/10.1080/09500693.2010.493185

Griffin, P., Care, E., & McGaw, B. (2012). The changing role of education and schools. In P. Griffin, B. McGaw, & E. Care (Eds.), Assessment and teaching of 21st century skills (pp. 1–45). London: Springer. https://doi.org/10.1007/978-94-007-2324-5_1

Gümnaasiumi riiklik õppekava (2011). Riigi Teataja I, 29.08.2014, 21. Külastatud aadressil https://www.riigiteataja.ee/akt/129082014021.

Hofstein, A., Eilks, I., & Bybee, R. (2011). Societal issues and their importance for contemporary science education: A pedagogical justification and the state-of-the-art in Israel, Germany and the USA. International Journal of Science and Mathematics Education, 9(6), 1459–1483. https://doi.org/10.1007/s10763-010-9273-9

Holbrook, J. (2008). Introduction: The need for change. Paradigm shifts in science education. In J. Holbrook, M. Rannikmäe, P. Reiska, & P. Ilsley (Eds.), The need for a paradigm shift in science education for post-Soviet societies (pp. 7–24). Frankfurt am Main: Peter Lang.

Holbrook, J., & Rannikmäe, M. (2007). The nature of science education for enhancing scientific literacy. International Journal of Science Education, 29(11), 1347–1362. https://doi.org/10.1080/09500690601007549

Holbrook, J., & Rannikmäe, M. (2009). The meaning of scientific literacy. International Journal of Environmental & Science Education, 4(3), 275–288.

Keppens, J., & Hay, D. (2008). Concept map assessment for teaching computer programming. Computer Science Education, 18(1), pp. 31–42. https://doi.org/10.1080/08993400701864880

Khishfe, R., & Lederman, N. (2007). Relationship between instructional context and views of nature of science. International Journal of Science Education, 29(8), 939–961. https://doi.org/10.1080/09500690601110947

Kinchin, I. (2014). Concept mapping as a learning tool in higher education: A critical analysis of recent reviews. The Journal of Continuing Higher Education, 62(1), 39–49. https://doi.org/10.1080/07377363.2014.872011

Krajcik, J. (2011). Learning progressions provide road maps for the development and validity of assessments and curriculum materials. Measurement, 9(2-3), 155–158. https://doi.org/10.1080/15366367.2011.603617

Laius, A., Post, A., & Rannikmäe, M. (2016). Determining support of Estonian stakeholders for a new competence-based science education curriculum. International Journal of Education and Information Technologies, 10, 14–24.

Laugksch, R. C. (2000). Scientific literacy: A conceptual overview. Science Education, 84(1), 71–94. https://doi.org/10.1002/(SICI)1098-237X(200001)84:1<71::AID-SCE6>3.0.CO;2-C

Lederman, N. G., Abd-el-Khalick, F., Bell, R. L., & Schwartz, R. S. (2002). Views of nature of science questionnaire: Towards valid and meaningful assessment of learners’ conceptions of the nature of science. Journal of Research in Science Teaching, 39(6), 479–521. https://doi.org/10.1002/tea.10034

McDonald, C. V. (2010). The influence of explicit nature of science and argumentation instruction on preservice primary teachers’ views of nature of science. Journal of Research in Science Teaching, 47(9), 1137–1164. https://doi.org/10.1002/tea.20377

McDonald, C. V. (2017). Exploring nature of science and argumentation in science education. In B. Akpan (Ed.), Science education: A global perspective (pp. 7‒44). Switzerland: Springer. https://doi.org/10.1007/978-3-319-32351-0_2

Murcia, K. (2009). Re-thinking the development of scientific literacy through a rope metaphor. Research in Science Education, 39(2), 215–229. https://doi.org/10.1007/s11165-008-9081-1

NGSS (2013). New Generation Science Standards. Retrieved from http://www.nextgenscience.org.

Novak, J .D. (2010). Learning, creating, and using knowledge: Concept maps as facilitative tools in schools and corporations. Journal of e-Learning and Knowledge Society, 6(3), 21–30.

Novak, J. D., & Cañas, A. J. (2008). The theory underlying concept maps and how to construct and use them. Pensacola: Institute for Human and Machine Cognition (IHMC). Retrieved from http://cmap.ihmc.us/docs/theory-of-concept-maps.

OECD (2007). PISA 2006: Science competencies for tomorrow’s world. Volume I: Analysis. Paris: OECD.

OECD (2016). PISA 2015 results (Vol. 1): Excellence and equity in education. Paris: OECD Publishing.

Partnership for 21st century skills. "Framework for 21st century learning" (s.a). Retrieved from http://www.p21.org/our-work/p21-framework.

Rannikmäe, A., & Rannikmäe, M. (2014). Teaduse olemus ja loodusainete õpetamine. M. Rannikmäe & R. Soobard (toim.), Paradigmaatilised suundumused loodusainete õpetamisel üldhariduskoolis (lk 21‒–32). Tartu: Eesti Ülikoolide Kirjastus.

Rannikmäe, A., Rannikmäe, M., & Holbrook, J. (2008). A paradigm shift in teachers: Recognising the nature of science as its’ place in teaching. In J. Holbrook, M. Rannikmäe, P. Reiska, & P. Ilsley (Eds.), The need for a paradigm shift in science education for post-Soviet societies (pp. 143–163). Frankfurt am Main: Peter Lang.

Rannikmäe, M., & Soobard, R. (2014). Loodusteaduslik ja tehnoloogia-alane kirjaoskus ja selle erinevad tasemed. M. Rannikmäe & R. Soobard (toim.), Paradigmaatilised suundumused loodusainete õpetamisel üldhariduskoolis (lk 11–20). Tartu: Eesti Ülikoolide Kirjastus.

Reiska, P., & Soika, K. (2015). Suggestions for teacher education from concept mapping studies. Knowledge Management & E-Learning, 7(1), 149–161.

Roberts, D. A. (2007). Scientific literacy/science literacy. In S. K Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 729–780). Mahwah: Lawrence Erlbaum Associates.

Roberts, D. A., & Bybee, R.W. (2014). Scientific literacy, science literacy, and science education. In N. G. Lederman & S. K. Abell (Eds.), Handbook of research on science education (Vol. III). New York: Routledge.

Romine, W. L., Sadler, T. D., & Kinslow, A. T. (2017). Assessment of scientific literacy: Development and validation of the Quantitative Assessment of Socio-Scientific Reasoning (QuASSR). Journal of Research in Science Teaching, 54(2), 274–295. https://doi.org/10.1002/tea.21368

Ruiz-Primo, M. A. (2000). On the use of concept maps as an assessment tool in science: What we have learned so far. Revista Electrónica de Investigación Educativa, 2(1), 29–52.

Sadler, T. D., & Zeidler, D. L. (2005). The significance of content knowledge for informal reasoning regarding socioscientific issues: Applying genetics knowledge to genetic engineering issues. Science Education, 89(1), 71–93. https://doi.org/10.1002/sce.20023

Sadler, T. D., & Zeidler, D. L. (2009). Scientific literacy, PISA, and socioscientific discourse: Assessment for progressive aims of science education. Journal of Research in Science Teaching, 46(8), 909–921. https://doi.org/10.1002/tea.20327

Sjøberg, S., & Schreiner, C. (2002). ROSE handbook: Introduction, guidelines and underlying ideas. Retrieved from http://www.ils.uio.no/forskning/rose/documents/ROSE%20handbook.htm.

Sjöström, J. (2013). Towards Bildung-oriented chemistry education. Science & Education, 22(7), 1873–1890. https://doi.org/10.1007/s11191-011-9401-0

Soika, K., & Reiska, P. (2013). Large scale studies with concept mapping. Journal for Educators, Teachers and Trainers, 4(1), 142–153.

Soika, K., & Reiska, P. (2014). Assessing student’s cognitive skills with concept mapping. 8th International Technology, Education and Development Conference (pp. 7033–7043). Valencia: IATED.

Soobard, R. (2015). A study of gymnasium students’ scientific literacy development based on determinants of cognitive learning outcomes and self-perception (Doctoral dissertation). Tartu: Tartu University Press.

Soobard, R., & Rannikmäe, M. (2014). Upper secondary students’ self-perceptions of both their competence in problem solving, decision making and reasoning within science subjects and their future careers. Journal of Baltic Science Education, 13(4), 544–558.

Soobard, R., & Rannikmäe, M. (2015). Examining curriculum related progress using a context-based test instrument – A comparison of Estonian grade 10 and 11 students. Science Education International, 26(3), 263–283.

Tytler, R. (2007). Australian education review: Re-imagining science education engaging students in science for Australia’s future. Victoria: ACER Press.

Tytler, R. (2014). Attitudes, identity, and aspirations toward science. In N. G. Lederman & S. K. Abell (Eds.), Handbook of research on science education (Vol. 3, pp. 82–103). New York: Routledge.

Van Eijck, M. (2012). Capturing the dynamics of science in science education. In B. J. Fraser, K. G. Tobin, & C. J. McRobbie (Eds.), Second international handbook of science education (Vol. 2, pp. 1029–1039). London: Springer. https://doi.org/10.1007/978-1-4020-9041-7_68

Wellington, J. (2000). Teaching and learning secondary science: Contemporary issues and practical approaches. London, New York: Springer.

##submission.downloads##

Avaldatud

2017-04-26

Väljaanne

Rubriik

Artiklid

Nende autorite loetumad artiklid